CONCORDANT SEMIGROUPS AND BALANCED CATEGORIES

P. G. ROMEO

ABSTRACT. Here we define balanced categories it is shown that the category of left [right] ideals of a concordant semigroup are balanced categories.

A non-empty set S with associative binary operation is called a semigroup, if S contains an identity element, then it is called a monoid. A subset of S which is closed under the induced binary operation is called a subsemigroup. An element $e \in S$ is called an idempotent if $e^2 = e$ and the set of all idempotents is S will be denoted by E(S). An element $a \in S$ is called regular if there exists an element $a' \in S$ such that aa'a = a, if every element os S is regular then S is a regular semigroup. A subset I of a semigroup S is called left (right, two sided) ideal if $SI \subseteq I$ ($IS \subseteq I$, $SIS \subseteq I$). In the study of the structure of semigroups ideals and idempotents play vital role.

1. Prelimanires

First we recall the basic definitions and results semigroups needed in the sequel. Let S be a semigroup and $a \in S$ the smallest left ideal containing a is $Sa \cup \{a\}$ and is called the principal left ideal generated by a, written as S^1a . Also aS^1 is the principal right ideal generated by a and S^1aS^1 the two sided principal ideal generated by a. Next we define certain equivalence relations called Green's relations on semigroups using these principal ideals.

Definition 1. Let a, b be elements in a semigroup S, then

- aLb if and only if they generate the same principal left ideal.
 ie., S¹a = S¹b.
- $a\mathcal{R}b$ if and only if they generate the same principal right ideal. ie., $aS^1 = bS^1$.
- $a\mathcal{J}b$ if and only if they generate the same principal two sided ideal. ie., $S^1aS^1=S^1bS^1$.

The intersection of \mathcal{R} and \mathcal{L} is of great importance and is denoted by \mathcal{H} and their join by \mathcal{D} . These equivalence relations are termed as Green's equivalences and are significant in the study of semigroups.

Note that in a regular semigroups each $\mathcal L$ - class and each $\mathcal R$ - class contains idempotents, ie., regular semigroups may be described as those class of semigroups in which each $\mathcal L$ - class and each $\mathcal R$ - class contains idempotents.

Let S be a semigroup. For $a, b \in S$ are said to be \mathcal{L}^* and \mathcal{R}^* related on S if and only if for all $x, y \in S^1$, $ax = ay \Leftrightarrow bx = by [xa = ya \Leftrightarrow xb = yb]$ and $\mathcal{H}^* = \mathcal{L}^* \cap \mathcal{R}^*$, $\mathcal{D}^* = \mathcal{L}^* \cup \mathcal{R}^*$. These are equivalence relations and are called

 $1991\ Mathematics\ Subject\ Classification.\ 20 M10.$

Key words and phrases. Biordered Sets,

generalized Green's relations. Note that these relations coincides with te Green's relations if the semigroup S is regular.

Definition 2. A semigroup S is called abundant if each \mathcal{L}^*- class and each \mathcal{R}^*- class contains idempotents.

Remark 1. Two elements $a, b \in S$ are $\mathcal{L}^* [\mathcal{R}^*]$ related on S if and only if there exists a semigroup \bar{S} containing S such that a, b are $\mathcal{L}[\mathcal{R}]$ related on \bar{S} .

Definition 3. A semigroup S is said to be idempotent connected if for each $a \in S$ and for each $a^+ \in \mathcal{R}^* \cap E(S)$ and $a^* \in \mathcal{L}^* \cap E(S)$ there is a bijection $\alpha : \langle a^+ \rangle \to \langle a^* \rangle$ satisfying

$$xa = a(x\alpha)$$
 for all $x \in \langle a^+ \rangle$

where for $e \in E(S)$, $\langle e \rangle$ denotes the subsemigroup of S generated by the set $\{f \in E(S) : f \leq e\}$.

1.1. Categories. We assume familiarity with basic definitions and results in category theory. However we recall the following; a morphism f in a category \mathcal{C} is a monomorphism (mono, in short) if for $g,h\in\mathcal{C},gf=hf$ implies g=h, that is the morphism is right cancellable and a monomorphism $f\in\mathcal{C}(c,c')$ is split if there exists a $g\in\mathcal{C}$ with $fg=1_c$. Dually a morphism $f\in\mathcal{C}$ is an epimorphism (epi,in short) if f is left cancellable and is split epi if there exists a $g\in\mathcal{C}(c',c)$ such that $gf=1_{c'}$.

Definition 4. A morphism $f \in C$ is called a balanced morphism if it is both mono and epi.

Two morphisms $f, g \in \mathcal{C}$ are equivalent if there exists $h, k \in \mathcal{C}$ such that f = hg and g = kf.

If there exists a choice of subobjects P (ie., an equivalence class of monomorphisms) in the category \mathcal{C} , then the pair (\mathcal{C},P) is called a category with subobjects (or a choice of subobjects in \mathcal{C}). A category \mathcal{C} is said to have factorization properity if every $f \in \mathcal{C}$ can be expressed as f = pm where p is an epimorpism and m is an embedding. A factorization of the form f = qj where q is an epimorphism and j is an inclusion is called a canonnical factorization. A category \mathcal{C} is said to have factorization property if and only if every morphism in \mathcal{C} admits a canonical factorization.

Let \mathcal{C} be a category with subobjects, for each $c \in v\mathcal{C}$, we denote by $\langle c \rangle_{\mathcal{C}}$ the full subcategory of \mathcal{C} whose objects are subobjects of \mathcal{C} . A subcategory \mathcal{C}' of \mathcal{C} is an ideal of \mathcal{C} if \mathcal{C}' is a full subcategory of \mathcal{C} such that $\langle c \rangle \subseteq \mathcal{C}'$ for all $c \in v\mathcal{C}'$. The ideal $\langle c \rangle_{\mathcal{C}}$ is called the ideal generated by c.

2. Balanced Categories

A factorization of a morphism $f \in \mathcal{C}$ of the form euj where e is a retraction u is a balanced morphism and j is an inclusion is called a balanced factorization of f. In particular if u is split then u is an isomorphism and such a factorization is called a normal factorization.

Proposition 1. Let C be a category with factorization property in which every inclusion splits, then

(1) if f admits balanced facrorizations euj and e'u'j' then eu = e'u' and j = j'.

- (2) if f is an epi morphism then every balanced factorization of f if exists is of the form eu, where e is a retraction and u is a balanced morphism.
- (3) if f is a monomorphism then f admts a unique balanced factorization.

Definition 5. Let $u \in C(c,d)$ be a balanced morphism and let $c_1 \subset c$, define $T_u : \langle c \rangle \to \langle d \rangle$ by

$$T_u(c_1) = im(j_{c_1}^c u) \text{ for each } c_1 \subseteq c$$
$$T_u(j_{c_1}^c) = j_{T_u(c_1)}^d$$

such that $j_{c_1}^c u = u_{c_1} j_{T_u}^d$ where u_{c_1} is the epimorphic component of $j_{c_1}^c u$. Then the balanced morphism u is called proper if T_u is an isomorphism.

Definition 6. A category C is called balanced if it satisfies the following

- (1) every inclusion in C splits
- (2) every morphism in C admits a balancede factorization
- (3) every balanced morphism is proper
- (4) if $f \in C$ is such that f = je then f admits a normal factorization
- 2.1. Semigroup of Balanced Cones. Let \mathcal{C} be a balanced category. A balanced cone γ is a mapping from $v\mathcal{C}$ to \mathcal{C} such that
 - (1) there is a $c_{\gamma} \in v\mathcal{C}$ such that for each $c \in v\mathcal{C}$, $\gamma_c : c \to c_{\gamma}$ and if $c_1 \subseteq c$ then $\gamma_{c_1} = j_{c_1}^c \gamma_c$.
- (2) there exists at least one $c \in v\mathcal{C}$ such that $\gamma_c : c \to c_{\gamma}$ is a balanced morphism. For each balanced cone γ in \mathcal{C} we define the M-set of γ as

$$M\gamma = \{c \in v\mathcal{C} : \gamma_c \text{ is a balanced morphism }\}.$$

If $f \in \mathcal{C}(c_{\gamma}, d)$ is an epimorphism then the map

$$\gamma * f : c \to \gamma_c f \text{ for all } c \in \mathcal{C}$$

is a balanced cone. We denote the set of all balanced cones in \mathcal{C} by \mathcal{TC} .

Theorem 1. For any balanced cones $\gamma^1, \gamma^2 \in \mathcal{TC}$ the binary composition defined by

$$\gamma^1 \cdot \gamma^2 = \gamma^1 * (\gamma^2_{c_{\gamma^1}})^{\circ}$$

is a closed and associative binary operation on \mathcal{TC} with respect to which \mathcal{TC} is a semigroup.

Theorem 2. The semigroup TC is a concordant semigroup.

For a balanced category C, its balanced dual is the category denoted by B^*C is the full subcategory of C^* with

$$vB^*\mathcal{C} = \{H(\epsilon, -) : \epsilon \in E(\mathcal{TC})\}$$

and morphisms are natural transformations between such functors. It can be seen that $B^*\mathcal{C}$ is a category with subobjects in which the inclusion is the inclusion amoung se valued functors.

2.2. Ideal Categories of Concordant Semigroups. Let S be a concordant semigroup and let L(S) denotes the category whose objects are principal left ideals generated by idempotents and morphisms are translations $\rho: Se \to Se', e, e' \in E(S)$ is a morphism in if and only if $\rho = \rho_t | Se$ where $\rho_t: s \mapsto st$ is a right translation induced by $t \in eSe'$, that is

$$L(S)(Se, Se') = \{ \rho(e, t, e') : t \in eSe' \}.$$

It is easy to verify that

- $\rho(e,t,e')$ is a monomorphism if and only if $e\mathcal{R}^*t$
- $\rho(e,t,e')$ is an epimorphism if and only if $t\mathcal{L}^*e'$
- $\rho(e,t,e')$ is a balanced morphism if and only if $e\mathcal{R}^*t\mathcal{L}^*e'$

and for all $g \in E(R_u^*) \cap \omega(e)$ and $h \in E(L_u^*)$, we have

$$\rho(e, u, f) = \rho(e, g, g) \cdot \rho(g, u, h) \cdot \rho(h, h, f)$$

is a balanced factorization of $\rho(e,u,f)$. ie., every morphism in the category L(S) has a balanced factorization and every such factorization arises in this way hence L(S) is a balanced category. Dually we can also define the balanced category R(S). Since $R(S) = L(S^{op})$, it is also a balanced category.

Theorem 3. Let C be a balanced category. Then $F: C \to L(\mathcal{TC})$ is an isomorphism of balanced categories. Consequently, a small category C with subobjects is balanced if and only if it is isomorphic to the category L(S) of principal left ideals of a concordant semigroup.

3. Cross connections

Definition 7. Let C and D be categories with sub objects. A functor $F: C \to D$ is called a local isomorphism if F is inclusion preserving, fully faithfull and for each $c \in vC$, $F \mid \langle c \rangle$ is an isomorphism of the ideal $\langle c \rangle$ onto $\langle F(c) \rangle$.

Suppose $\mathcal C$ and $\mathcal D$ be balanced categories. A local isomorphism $\Gamma:\mathcal C\to B^*\mathcal D$ is called a connection of $\mathcal C$ with $\mathcal D$. Given a connection $\Gamma:\mathcal D\to B^*\mathcal C$ and $\Gamma(d)$ is an h-functor for all $d\in\mathcal D$. Since $M\Gamma(d)$ is nonempty for each $d\in v\mathcal D$ there is a $c\in v\mathcal D$ with $c\in M\Gamma(d)$. Let C_Γ denotes the ideal of $\mathcal C$ with

$$vC_{\Gamma} = \{c \in v\mathcal{C} : c \in M\Gamma(d) : \text{for some } d \in v\mathcal{D}\}$$

Theorem 4. Let $\Gamma: \mathcal{D} \to B^*\mathcal{C}$ be connection of balanced categories \mathcal{C} with \mathcal{D} and let C_{Γ} denotes the ideal of \mathcal{C} , then there exists a unique connection $\Gamma^*: C_{\Gamma} \to B^*\mathcal{D}$ such that

$$c \in M\Gamma(d) \Leftrightarrow d \in M\Gamma^*(c)$$

and a natural isomorphism $\chi_{\Gamma}: \Gamma(-,-) \to \Gamma^*(-,-)$.

Definition 8. A cross connection of balanced category C with D is a triplet (Γ, Δ, χ) where $\Gamma: D \to B^*C$ and $\Delta: C \to B^*D$ are local isomorphisms such that

$$c \in M\Gamma(d) \Leftrightarrow d \in M\Delta(c)$$

and $\chi: \Gamma(-,-) \to \Delta(-,-)$ is a natural isomorphism.

Remark 2. If the connection $\Gamma: \mathcal{D} \to B^*\mathcal{C}$ satisfies the condition

$$vC_{\Gamma} = v\mathcal{C}$$

then $(\Gamma, \Gamma^*, \chi_{\Gamma})$ is a cross connection.

References

- A. H. Clifford and G. B. Preston (1964): The Algebraic Theory of Semigroups, Volume 1 Math. Surveys of the American. Math. Soc.7, Providence, R. I.
- [2] David Easdown (1985): Biordered sets comes from Semigroups, Journal of Algebra, 96, 581-591, 87d:06020.
- [3] David Easdown(1991): Biordered Sets of Rings, Monash Conference on Semigroup Theory (Melbourne, 1990), 43–49, World Sci. Publ., River Edge, NJ, MR1232671
- [4] P.G.Romeo (2007): Concordant Semigroups and Balanced Categories, Southeast Asian Bulletin of Mathematics (2007) 31: 949-961.

Dept. of Mathematics, Cochin University of Science and Technology, Kochi, Kerala, INDIA.

 $E\text{-}mail\ address:\ romeo_parackal@yahoo.com$